Гиперзвуковая суета: в погоне за скоростью
Рисунок момента отделения от носителя гиперзвуковой ракеты HSSW. Американские ВВС намереваются перейти от разработки к программе развертывания этой системы вооружения после запланированного на 2020 год демонстрационного полета
Гиперзвук становится следующим ключевым параметром платформ вооружения и наблюдения и поэтому стоит пристальнее взглянуть на исследования, проводимые в этой области США, Россией и Индией
Министерство обороны США и другие правительственные структуры разрабатывают гиперзвуковую технологию для двух ближайших и одной долгосрочной целей. По словам руководителя отдела высокоскоростных систем в исследовательской лаборатории ВВС США (AFRL) Роберта Мерсье, двумя ближними целями являются гиперзвуковое оружие, технологическая готовность которого ожидается в начале 20-х годов, и беспилотный аппарат наблюдения, который будет готов к развертыванию в конце 20-х или начале 30-х годов, а гиперзвуковые аппараты последуют в более отдаленном будущем.
«Освоение космоса с помощью аппаратов с воздушно-реактивным двигателем - это гораздо более отдаленная перспектива, - сообщил он в одном из интервью. - Маловероятно, что гиперзвуковые космические аппараты будут готовы ранее 2050-х годов». Мерсье добавил, что генеральная стратегия развития заключается в том, чтобы начать с малого вооружения и затем, по мере развития технологий и материалов, расшириться до воздушных и космических аппаратов.
Спиро Лекудис, директор департамента систем вооружения, закупок, технологий и снабжения в минобороны, подтвердил, что гиперзвуковое оружие, скорее всего, станет первой программой закупок, которая появится после разработки этой технологии министерством и его партнерскими организациями. «Летательный аппарат определенно является существенно более долгосрочным проектом, чем оружие», - сказал он в своем интервью. Ожидается, что ВВС США проведут демонстрацию высокоскоростного ударного оружия HSSW (High Speed Strike Weapon) - совместная разработка с Управлением перспективных оборонных исследований (DARPA) – примерно в 2020 году, тогда то Пентагон и решит, как лучше всего перенести эту технологию в программу разработки и закупки гиперзвуковой ракеты.
«Существуют две основных исследовательских работы, направленных на демонстрацию технологии HSSW, - рассказывает Билл Джиллард, разработчик планов и программ в AFRL. - Первая - это программа тактического разгона-планирования TBG (Tactical BoosWSIide), разрабатываемая компаниями Lockheed Martin и Raytheon, а вторая программа - гиперзвуковая концепция оружия с воздушно-реактивным двигателем HAWC (Hypersonic Air-breathing Weapon Concept), возглавляемая Boeing».
«Между тем, лаборатория AFRL проводит еще одно фундаментальное исследование с целью дополнения проектов DARPA и ВВС США», - заметил Джиллард. Например, в рамках проверки концепции гиперзвукового многоразового аппарата REACH (reusable aircraft concept for hypersonics) помимо исследования основных материалов проведено несколько экспериментов с небольшими и средними прямоточными воздушно-реактивными двигателями. «Нашей целью является продвижение базы данных и разработка и демонстрация технологий, которые можно взять для создания новых систем». Длительные фундаментальные исследования AFRL в области совершенствования керамоматричных композиционных и других жаропрочных материалов чрезвычайно важны для создания перспективных гиперзвуковых аппаратов.
AFRL и другие пентагоновские лаборатории интенсивно работают над двумя основными аспектами перспективных гиперзвуковых аппаратов: возможность многократного использования и увеличение их размеров. «В лаборатории AFRL существует даже некая тенденция, направленная на содействие развитию концепции многоразового применения и более крупного размера гиперзвуковых систем, - сказал Джиллард. - Мы сосредоточили все эти технологии на таких проектах как Х-51, и REACH станет еще одним».
Рисунок отделившегося высокоскоростного ударного оружия HSSW (High Speed Strike Weapon) в полете, ВВС США рассчитывают провести демонстрацию системы (совместная разработка с Управлением DARPA) примерно в 2020 году
Компания Lockheed Martin с 2003 по 2011 год работала с DARPA над предыдущей концепцией гиперзвукового аппарата Falcon Hypersonic Technology Vehicle-2. На рисунке отделившийся аппарат Falcon в полете
Целью программ TBG и HAWC является ускорение систем вооружения до скорости М=5 и дальнейшее их планирование на свою цель. Подобное вооружение должно быть маневренным и чрезвычайно устойчивым к нагреву. В конечном счете, эти системы смогут достичь высоты почти 60 км. Боевая часть, разрабатываемая для гиперзвуковой ракеты, имеет массу 76 кг, что примерно равно массе бомбы малого диаметра SDB (Small Diameter Bomb).
В то время как в проекте Х-51А была успешно продемонстрирована интеграция летательного аппарата и гиперзвукового двигателя, упор в проектах TBG и HAWC будет сделан на продвинутое наведение и управление, что не было полностью реализовано в проектах Falcon или WaveRider. Подсистемами головок самонаведения (ГСН) занимаются в нескольких лабораториях ВВС США по вооружению с целью дальнейшего повышения возможностей гиперзвуковых систем. В марте 2014 года в заявлении DARPA было сказано о том, что в рамках проекта TBG, который должен завершиться демонстрационным полетом к 2020 году, компании-партнеры пытаются разработать технологии для тактической гиперзвуковой планирующей системы с ракетным ускорителем, запускаемой с самолета-носителя.
«Программа будет направлена на решение проблем, связанных с системой и технологиями, необходимыми, для того, чтобы создать гиперзвуковую планирующую систему с ракетным ускорителем. К ним относятся разработка концепций аппарата с необходимыми аэродинамическими и аэротермодинамическими характеристиками; управляемость и надежность в широком диапазоне условий эксплуатации; характеристики системы и подсистемы, необходимые для эффективности в соответствующих условиях эксплуатации; наконец, подходы для снижения стоимости и повышения ценовой доступности экспериментальной системы и будущих серийных систем», - говорится в заявлении. Летательный аппарат для проекта TBG представляет собой боевую часть, которая отделяется от ускорителя и планирует на скоростях до М=10 и более.
Тем временем, в рамках программы HAWC, следующей за проектом Х-51А, будет продемонстрирована гиперзвуковая крылатая ракета с ПВРД на меньших скоростях - примерно М=5 и выше. «Технологии HAWC могут расшириться до перспективных многоразовых гиперзвуковых воздушных платформ, которые можно будет использовать в качестве разведывательных средств или доступа в космическое пространство,» говорится в заявлении DARPA. Ни DARPA, ни головной подрядчик Boeing не раскрывают всех деталей своей совместной программы.
Хотя главными целями министерства обороны в области гиперзвука являются системы вооружения и разведывательные платформы, DARPA в 2013 году начала новую программу по разработке многоразового беспилотного гиперзвукового ускорителя для запуска малоразмерных спутников массой 1360-2270 кг на низкую орбиту, который одновременно будет служить в качестве испытательной лаборатории для гиперзвуковых аппаратов. Согласно заявлению Конгресса, в июле 2015 года Управление выдало контракт компании Boeing и ее партнеру Blue Origin стоимостью 6,6 миллиона долларов на продолжение работ по экспериментальному космическому самолету XS-1 Experimental Spaceplane. В августе 2014 года компания Northrop Grumman объявила о том, что в сотрудничестве с Scaled Composites и Virgin Galactic она также работает над техническим проектом и планом демонстрационных полетов программы XS-1. Компания получила 13-месячный контракт стоимостью 3,9 миллиона долларов.
Ожидается, что XS-1 будет иметь многоразовый стартовый ускоритель, который в комбинации с одноразовой разгонной ступенью, обеспечит доступную по средствам доставку аппарат класса 1360 кг на низкую околоземную орбиту. Кроме дешевого запуска, оцениваемого в одну десятую стоимости нынешнего запуска тяжелой ракеты, XS-1, скорее всего, послужит также испытательной лабораторией для новых гиперзвуковых аппаратов.
DARPA хотело бы в перспективе запускать XS-1 каждый день по цене менее 5 миллионов за полет. Управление хочет получить аппарат, который сможет достичь скоростей более 10 чисел Маха. Запрашиваемые принципы работы «как у самолета» включают горизонтальную посадку на стандартные посадочные полосы, кроме того, запуск должен производиться с подъемной пусковой установки, плюс должны быть минимальная инфраструктура и наземный персонал и высокий уровень автономности. Первый тестовый орбитальный полет запланирован на 2018 год.
После нескольких неудачных попыток НАСА, начавшихся еще в 80-х годах, разработать систему подобную XS-1, военные исследователи теперь полагают, что технология уже достаточно развилась и связано это с прогрессом в сфере легких и дешевых композиционных материалов и улучшенной тепловой защиты.
XS-1 - это один из нескольких проектов Пентагона, направленный на снижение стоимости запуска спутников. В связи с сокращением американского оборонного бюджета и наращиванием возможностей других стран рутинный доступ в космос становится все более приоритетным для национальной безопасности. Использование тяжелых ракет для запуска спутников дорого и требует тщательно продуманной стратегии на фоне немногочисленных возможностей. Подобные традиционные запуски могут стоить сотни миллионов долларов и потребовать обслуживания дорогой инфраструктуры. В связи с тем, что ВВС США настаивают на том, чтобы законодатели издали постановление о приостановке использования российских ракетных двигателей РД-180 для запуска американских спутников, исследования DARPA в области гиперзвука помогут существенно сократить путь, который необходимо будет пройти, опираясь только лишь на собственные силы и средства.
Российская экспериментальная гиперзвуковая ракета проходит летные испытания с 2012 года
Индия: новый игрок на поле
После соглашения по совместной разработке с Россией в 1998 году стартовала индийская программа по ракете BrahMos. Согласно соглашению, основными партнерами выступили российское «НПО Машиностроения» и индийская организация по оборонным исследованиям и разработкам (DRDO).
Первый ее вариант представляет собой сверхзвуковую крылатую двухступенчатую ракету с радиолокационным наведением. Твердотопливный двигатель первой ступени ускоряет ракету до сверхзвуковых скоростей, тогда как жидкостной ПВРД второй ступени разгоняет ракету до скорости M=2,8. BrahMos, по сути, представляет собой индийский вариант российской ракеты «Яхонт».
В то время как ракета BrahMos была уже поставлена в индийскую армию, флот и авиацию, решение о начале разработки силами уже сложившегося партнерства гиперзвукового варианта ракеты BrahMos-II было принято в 2009 году.
В соответствии с техническим проектом, BrahMos-ll (Kalam) будет летать на скоростях свыше 6 чисел Маха и иметь более высокую точность по сравнению с вариантом BrahMos-А. Ракета будет иметь максимальную дальность действия 290 км, которая ограничена Режимом контроля за ракетными технологиями, подписанным Россией (он ограничивает для страны-партнера разработку ракет с дальностью более 300 км). С целью повышения скорости в ракете BrahMos-2 будет использован гиперзвуковой прямоточный воздушно-реактивный двигатель и, по данным ряда источников, российская промышленность разрабатывает для него специальное топливо.
Для проекта BrahMos-II было принято ключевое решение сохранить физические параметры предыдущего варианта с тем, чтобы новая ракета могла использовать уже разработанные пусковые установки и другую инфраструктуру.
В набор целей, определенный для нового варианта, входят укрепленные цели, например подземные убежища и склады с вооружением.
Масштабная модель ракеты BrahMos-II была показана на выставке Aero India 2013, а испытания прототипа должны начаться в 2017 году. (На недавно прошедшей выставке Aero India 2017 был представлен истребитель Су-30МКИ с ракетой Brahmos на подкрыльевом пилоне). В 2015 году в одном из интервью исполнительный директор компании Brahmos Aerospace Кумар Мишра сообщил, что точная конфигурация ещё должна быть утверждена и что полноценный опытный образец ожидается не ранее 2022 года.
Предварительный макет российско-индийской ракеты BrahMos-II, показанный в 2013 году в качестве демонстрации намерений по совместной разработке гиперзвуковой ракеты
Использованы материалы:
www.shephardmedia.com
www.defense.gov
www.darpa.mil
www.boeing.com
www.lockheedmartin.com
www.northropgrumman.com
www.ktrv.ru
www.tmkb-soyuz.ru
www.upkb.ru
www.npomash.ru
www.drdo.gov.in
www.wikipedia.org
ru.wikipedia.org
Автор: Alex Alexeev